博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
《Linux内核设计与实现》读书笔记(十一)- 定时器和时间管理
阅读量:6436 次
发布时间:2019-06-23

本文共 14348 字,大约阅读时间需要 47 分钟。

系统中有很多与时间相关的程序(比如定期执行的任务,某一时间执行的任务,推迟一段时间执行的任务),因此,时间的管理对于linux来说非常重要。

 

主要内容:

  • 系统时间
  • 定时器
  • 定时器相关概念
  • 定时器执行流程
  • 实现程序延迟的方法
  • 定时器和延迟的例子

 

1. 系统时间

系统中管理的时间有2种:实际时间和定时器。

1.1  实际时间

实际时间就是现实中钟表上显示的时间,其实内核中并不常用这个时间,主要是用户空间的程序有时需要获取当前时间,

所以内核中也管理着这个时间。

 

实际时间的获取是在开机后,内核初始化时从RTC读取的。

内核读取这个时间后就将其放入内核中的 xtime 变量中,并且在系统的运行中不断更新这个值。

注:RTC就是实时时钟的缩写,它是用来存放系统时间的设备。一般和BIOS一样,由主板上的电池供电的,所以即使关机也可将时间保存。

 

实际时间存放的变量 xtime 在文件 kernel/time/timekeeping.c中。

/* 按照16位对齐,其实就是2个long型的数据 */struct timespec xtime __attribute__ ((aligned (16)));/* timespec结构体的定义如下, 参考 
*/struct timespec { __kernel_time_t tv_sec; /* seconds */ long tv_nsec; /* nanoseconds */};/* _kernel_time_t 定义如下 */typedef long __kernel_time_t;

 

系统读写 xtime 时用的就是顺序锁。

/* 写入 xtime 参考 do_sometimeofday 方法 */int do_settimeofday(struct timespec *tv){/* 省略 。。。。 */    write_seqlock_irqsave(&xtime_lock, flags); /* 获取写锁 *//* 更新 xtime */    write_sequnlock_irqrestore(&xtime_lock, flags); /* 释放写锁 *//* 省略 。。。。 */    return 0;}/* 读取 xtime 参考 do_gettimeofday 方法 */void do_gettimeofday(struct timeval *tv){    struct timespec now;    getnstimeofday(&now); /* 就是在这个方法中获取读锁,并读取 xtime */    tv->tv_sec = now.tv_sec;    tv->tv_usec = now.tv_nsec/1000;}void getnstimeofday(struct timespec *ts){/* 省略 。。。。 *//* 顺序锁中读锁来循环获取 xtime,直至读取过程中 xtime 没有被改变过 */    do {        seq = read_seqbegin(&xtime_lock);        *ts = xtime;        nsecs = timekeeping_get_ns();        /* If arch requires, add in gettimeoffset() */        nsecs += arch_gettimeoffset();    } while (read_seqretry(&xtime_lock, seq));/* 省略 。。。。 */}

上述场景中,写锁必须要优先于读锁(因为 xtime 必须及时更新),而且写锁的使用者很少(一般只有系统定期更新xtime的线程需要持有这个锁)。

这正是 顺序锁的应用场景。

 

1.2 定时器

定时器是内核中主要使用的时间管理方法,通过定时器,可以有效的调度程序的执行。

动态定时器是内核中使用比较多的定时器,下面重点讨论的也是动态定时器。

 

2. 定时器

内核中的定时器有2种,静态定时器和动态定时器。

静态定时器一般执行了一些周期性的固定工作:

  • 更新系统运行时间
  • 更新实际时间
  • 在SMP系统上,平衡各个处理器上的运行队列
  • 检查当前进程是否用尽了自己的时间片,如果用尽,需要重新调度。
  • 更新资源消耗和处理器时间统计值

 

动态定时器顾名思义,是在需要时(一般是推迟程序执行)动态创建的定时器,使用后销毁(一般都是只用一次)。

一般我们在内核代码中使用的定时器基本都是动态定时器,下面重点讨论动态定时器相关的概念和使用方法。

 

3. 定时器相关概念

定时器的使用中,下面3个概念非常重要:

  1. HZ
  2. jiffies
  3. 时间中断处理程序

 

3.1 HZ

节拍率(HZ)是时钟中断的频率,表示的一秒内时钟中断的次数。

比如 HZ=100 表示一秒内触发100次时钟中断程序。

 

HZ的值一般与体系结构有关,x86 体系结构一般定义为 100,参考文件 include/asm-generic/param.h

HZ值的大小的设置过程其实就是平衡 精度和性能 的过程,并不是HZ值越高越好。

HZ值

优势

劣势

高HZ 时钟中断程序运行的更加频繁,依赖时间执行的程序更加精确,
对资源消耗和系统运行时间的统计更加精确。
时钟中断执行的频繁,增加系统负担
时钟中断占用的CPU时间过多

 

此外,有一点需要注意,内核中使用的HZ可能和用户空间中定义的HZ值不一致,为了避免用户空间取得错误的时间,

内核中也定义了 USER_HZ,即用户空间使用的HZ值。

一般来说,USER_HZ 和 HZ 都是相差整数倍,内核中通过函数 jiffies_to_clock_t 来将内核来将内核中的 jiffies转为 用户空间 jiffies

/* 参见文件: kernel/time.c  *//* * Convert jiffies/jiffies_64 to clock_t and back. */clock_t jiffies_to_clock_t(unsigned long x){#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0# if HZ < USER_HZ    return x * (USER_HZ / HZ);# else    return x / (HZ / USER_HZ);# endif#else    return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);#endif}EXPORT_SYMBOL(jiffies_to_clock_t);

 

3.2 jiffies

jiffies用来记录自系统启动以来产生的总节拍数。比如系统启动了 N 秒,那么 jiffies就为 N×HZ

jiffies的相关定义参考头文件 <linux/jiffies.h>  include/linux/jiffies.h

/* 64bit和32bit的jiffies定义如下 */extern u64 __jiffy_data jiffies_64;extern unsigned long volatile __jiffy_data jiffies;

 

使用定时器时一般都是以jiffies为单位来延迟程序执行的,比如延迟5个节拍后执行的话,执行时间就是 jiffies+5

32位的jiffies的最大值为 2^32-1,在使用时有可能会出现回绕的问题。

比如下面的代码:

unsigned long timeout = jiffies + HZ/2; /* 设置超时时间为 0.5秒 */while (timeout < jiffies){    /* 还没有超时,继续执行任务 */}/* 执行超时后的任务 */

正常情况下,上面的代码没有问题。当jiffies接近最大值的时候,就会出现回绕问题。

由于是unsinged long类型,所以jiffies达到最大值后会变成0然后再逐渐变大,如下图所示:

 

所以在上述的循环代码中,会出现如下情况:

  1. 循环中第一次比较时,jiffies = J1,没有超时
  2. 循环中第二次比较时,jiffies = J2,实际已经超时了,但是由于jiffies超过的最大值后又从0开始,所以J2远远小于timeout
  3. while循环会执行很长时间(> 2^32-1 个节拍)不会结束,几乎相当于死循环了

 

为了回避回扰的问题,可以使用<linux/jiffies.h>头文件中提供的 time_aftertime_before等宏

#define time_after(a,b)        \    (typecheck(unsigned long, a) && \     typecheck(unsigned long, b) && \     ((long)(b) - (long)(a) < 0))#define time_before(a,b)    time_after(b,a)#define time_after_eq(a,b)    \    (typecheck(unsigned long, a) && \     typecheck(unsigned long, b) && \     ((long)(a) - (long)(b) >= 0))#define time_before_eq(a,b)    time_after_eq(b,a)

上述代码的原理其实就是将 unsigned long 类型转换为 long 类型来避免回扰带来的错误,

long 类型超过最大值时变化趋势如下:

 

long 型的数据的回绕会出现在 2^31-1 变为 -2^32 的时候,如下图所示:

  1. 第一次比较时,jiffies = J1,没有超时
  2. 第二次比较时,jiffies = J2,一般 J2 是负数
    理论上 (long)timeout - (long)J2 = 正数 - 负数 = 正数(result)
    但是,这个正数(result)一般会大于 2^31 - 1,所以long型的result又发生了一次回绕,变成了负数。
    除非timeout和J2之间的间隔 > 2^32 个节拍,result的值才会为正数(注1)。

注1:result的值为正数时,必须是在result的值 小于 2^31-1 的情况下,大于 2^31-1 会发生回绕。

上图中 X + Y 表示timeout 和 J2之间经过的节拍数。

result 小于 2^31-1 ,也就是 timeout - J2 < 2^31 – 1

timeout 和 -J2 表示的节拍数如上图所示。(因为J2是负数,所有-J2表示上图所示范围的值)

因为 timeout + X + Y - J2 = 2^31-1 + 2^32

所以 timeout - J2 < 2^31 - 1 时, X + Y > 2^32

也就是说,当timeout和J2之间经过至少 2^32 个节拍后,result才可能变为正数。

timeout和J2之间相差这么多节拍是不可能的(不信可以用HZ将这些节拍换算成秒就知道了。。。)

 

利用time_after宏就可以巧妙的避免回绕带来的超时判断问题,将之前的代码改成如下代码即可:

unsigned long timeout = jiffies + HZ/2; /* 设置超时时间为 0.5秒 */while (time_after(jiffies, timeout)){    /* 还没有超时,继续执行任务 */}/* 执行超时后的任务 */

 

3.3 时钟中断处理程序

时钟中断处理程序作为系统定时器而注册到内核中,体系结构的不同,可能时钟中断处理程序中处理的内容不同。

但是以下这些基本的工作都会执行:

  • 获得 xtime_lock 锁,以便对访问 jiffies_64 和墙上时间 xtime 进行保护
  • 需要时应答或重新设置系统时钟
  • 周期性的使用墙上时间更新实时时钟
  • 调用 tick_periodic()

 

tick_periodic函数位于: kernel/time/tick-common.c

static void tick_periodic(int cpu){    if (tick_do_timer_cpu == cpu) {        write_seqlock(&xtime_lock);        /* Keep track of the next tick event */        tick_next_period = ktime_add(tick_next_period, tick_period);        do_timer(1);        write_sequnlock(&xtime_lock);    }    update_process_times(user_mode(get_irq_regs()));    profile_tick(CPU_PROFILING);}

其中最重要的是 do_timer 和 update_process_times 函数。

我了解的步骤进行了简单的注释。

void do_timer(unsigned long ticks){    /* jiffies_64 增加指定ticks */    jiffies_64 += ticks;    /* 更新实际时间 */    update_wall_time();    /* 更新系统的平均负载值 */    calc_global_load();}void update_process_times(int user_tick){    struct task_struct *p = current;    int cpu = smp_processor_id();    /* 更新当前进程占用CPU的时间 */    account_process_tick(p, user_tick);    /* 同时触发软中断,处理所有到期的定时器 */    run_local_timers();    rcu_check_callbacks(cpu, user_tick);    printk_tick();    /* 减少当前进程的时间片数 */    scheduler_tick();    run_posix_cpu_timers(p);}

 

4. 定时器执行流程

这里讨论的定时器执行流程是动态定时器的执行流程。

 

4.1 定时器的定义

定时器在内核中用一个链表来保存的,链表的每个节点都是一个定时器。

参见头文件 <linux/timer.h>

struct timer_list {    struct list_head entry;    unsigned long expires;    void (*function)(unsigned long);    unsigned long data;    struct tvec_base *base;#ifdef CONFIG_TIMER_STATS    void *start_site;    char start_comm[16];    int start_pid;#endif#ifdef CONFIG_LOCKDEP    struct lockdep_map lockdep_map;#endif};

通过加入条件编译的参数,可以追加一些调试信息。

 

4.2 定时器的生命周期

一个动态定时器的生命周期中,一般会经过下面的几个步骤:

1. 初始化定时器:

struct timer_list my_timer; /* 定义定时器 */init_timer(&my_timer);      /* 初始化定时器 */

 

2. 填充定时器:

my_timer.expires = jiffies + delay; /* 定义超时的节拍数 */my_timer.data = 0;                  /* 给定时器函数传入的参数 */my_timer.function = my_function;    /* 定时器超时时,执行的自定义函数 *//* 从定时器结构体中,我们可以看出这个函数的原型应该如下所示: */void my_function(unsigned long data);

 

3. 激活定时器和修改定时器:

激活定时器之后才会被触发,否则定时器不会执行。

修改定时器主要是修改定时器的延迟时间,修改定时器后,不管原先定时器有没有被激活,都会处于激活状态。

 

填充定时器结构之后,可以只激活定时器,也可以只修改定时器,也可以激活定时器后再修改定时器。

所以填充定时器结构和触发定时器之间的步骤,也就是虚线框中的步骤是不确定的。

add_timer(&my_timer);  /* 激活定时器 */mod_timer(&my_timer, jiffies + new_delay);  /* 修改定时器,设置新的延迟时间 */

 

4. 触发定时器:

每次时钟中断处理程序会检查已经激活的定时器是否超时,如果超时就执行定时器结构中的自定义函数。

 

5. 删除定时器:

激活和未被激活的定时器都可以被删除,已经超时的定时器会自动删除,不用特意去删除。

/* * 删除激活的定时器时,此函数返回1 * 删除未激活的定时器时,此函数返回0 */del_timer(&my_timer);

在多核处理器上用 del_timer 函数删除定时器时,可能在删除时正好另一个CPU核上的时钟中断处理程序正在执行这个定时器,于是就形成了竞争条件。

为了避免竞争条件,建议使用 del_timer_sync 函数来删除定时器。

del_timer_sync 函数会等待其他处理器上的定时器处理程序全部结束后,才删除指定的定时器。

/* * 和del_timer 不同,del_timer_sync 不能在中断上下文中执行 */del_timer_sync(&my_timer);

 

5. 实现程序延迟的方法

内核中有个利用定时器实现延迟的函数 schedule_timeout

这个函数会将当前的任务睡眠到指定时间后唤醒,所以等待时不会占用CPU时间。

/* 将任务设置为可中断睡眠状态 */set_current_state(TASK_INTERRUPTIBLE);/* 小睡一会儿,“s“秒后唤醒 */schedule_timeout(s*HZ);

 

查看 schedule_timeout 函数的实现方法,可以看出是如何使用定时器的。

signed long __sched schedule_timeout(signed long timeout){    /* 定义一个定时器 */    struct timer_list timer;    unsigned long expire;    switch (timeout)    {    case MAX_SCHEDULE_TIMEOUT:        /*         * These two special cases are useful to be comfortable         * in the caller. Nothing more. We could take         * MAX_SCHEDULE_TIMEOUT from one of the negative value         * but I' d like to return a valid offset (>=0) to allow         * the caller to do everything it want with the retval.         */        schedule();        goto out;    default:        /*         * Another bit of PARANOID. Note that the retval will be         * 0 since no piece of kernel is supposed to do a check         * for a negative retval of schedule_timeout() (since it         * should never happens anyway). You just have the printk()         * that will tell you if something is gone wrong and where.         */        if (timeout < 0) {            printk(KERN_ERR "schedule_timeout: wrong timeout "                "value %lx\n", timeout);            dump_stack();            current->state = TASK_RUNNING;            goto out;        }    }    /* 设置超时时间 */    expire = timeout + jiffies;    /* 初始化定时器,超时处理函数是 process_timeout,后面再补充说明一下这个函数 */    setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);    /* 修改定时器,同时会激活定时器 */    __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);    /* 将本任务睡眠,调度其他任务 */    schedule();    /* 删除定时器,其实就是 del_timer_sync 的宏    del_singleshot_timer_sync(&timer);    /* Remove the timer from the object tracker */    destroy_timer_on_stack(&timer);    timeout = expire - jiffies; out:    return timeout < 0 ? 0 : timeout;}EXPORT_SYMBOL(schedule_timeout);/*  * 超时处理函数 process_timeout 里面只有一步操作,唤醒当前任务。 * process_timeout 的参数其实就是 当前任务的地址 */static void process_timeout(unsigned long __data){    wake_up_process((struct task_struct *)__data);}

schedule_timeout 一般用于延迟时间较长的程序。

这里的延迟时间较长是对于计算机而言的,其实也就是延迟大于 1 个节拍(jiffies)。

 

对于某些极其短暂的延迟,比如只有1ms,甚至1us,1ns的延迟,必须使用特殊的延迟方法。

1s = 1000ms = 1000000us = 1000000000ns (1秒=1000毫秒=1000000微秒=1000000000纳秒)

假设 HZ=100,那么 1个节拍的时间间隔是 1/100秒,大概10ms左右。

所以对于那些极其短暂的延迟,schedule_timeout 函数是无法使用的。

好在内核对于这些短暂,精确的延迟要求也提供了相应的宏。

/* 具体实现参见 include/linux/delay.h * 以及 arch/x86/include/asm/delay.h */#define mdelay(n) ...#define udelay(n) ...#define ndelay(n) ...

通过这些宏,可以简单的实现延迟,比如延迟 5ns,只需 ndelay(5); 即可。

 

这些短延迟的实现原理并不复杂,

首先,内核在启动时就计算出了当前处理器1秒能执行多少次循环,即 loops_per_jiffy

(loops_per_jiffy 的计算方法参见 init/main.c 文件中的 calibrate_delay 方法)。

然后算出延迟 5ns 需要循环多少次,执行那么多次空循环即可达到延迟的效果。

 

loops_per_jiffy 的值可以在启动信息中看到:

[root@vbox ~]# dmesg | grep delayCalibrating delay loop (skipped), value calculated using timer frequency.. 6387.58 BogoMIPS (lpj=3193792)

我的虚拟机中看到 (lpj=3193792)

 

6. 定时器和延迟的例子

下面的例子测试了短延迟,自定义定时器以及 schedule_timeout 的使用:

#include 
#include
#include
#include
#include
#include "kn_common.h"MODULE_LICENSE("Dual BSD/GPL");static void test_short_delay(void);static void test_delay(void);static void test_schedule_timeout(void);static void my_delay_function(unsigned long);static int testdelay_init(void){ printk(KERN_ALERT "HZ in current system: %dHz\n", HZ); /* test short delay */ test_short_delay(); /* test delay */ test_delay(); /* test schedule timeout */ test_schedule_timeout(); return 0;}static void testdelay_exit(void){ printk(KERN_ALERT "*************************\n"); print_current_time(0); printk(KERN_ALERT "testdelay is exited!\n"); printk(KERN_ALERT "*************************\n");}static void test_short_delay(){ printk(KERN_ALERT "jiffies [b e f o r e] short delay: %lu", jiffies); ndelay(5); printk(KERN_ALERT "jiffies [a f t e r] short delay: %lu", jiffies);}static void test_delay(){ /* 初始化定时器 */ struct timer_list my_timer; init_timer(&my_timer); /* 填充定时器 */ my_timer.expires = jiffies + 1*HZ; /* 2秒后超时函数执行 */ my_timer.data = jiffies; my_timer.function = my_delay_function; /* 激活定时器 */ add_timer(&my_timer);}static void my_delay_function(unsigned long data){ printk(KERN_ALERT "This is my delay function start......\n"); printk(KERN_ALERT "The jiffies when init timer: %lu\n", data); printk(KERN_ALERT "The jiffies when timer is running: %lu\n", jiffies); printk(KERN_ALERT "This is my delay function end........\n");}static void test_schedule_timeout(){ printk(KERN_ALERT "This sample start at : %lu", jiffies); /* 睡眠2秒 */ set_current_state(TASK_INTERRUPTIBLE); printk(KERN_ALERT "sleep 2s ....\n"); schedule_timeout(2*HZ); printk(KERN_ALERT "This sample end at : %lu", jiffies);}module_init(testdelay_init);module_exit(testdelay_exit);

其中用到的 kn_common.h 和 kn_common.c 参见之前的博客

Makefile如下:

# must complile on customize kernelobj-m += mydelay.omydelay-objs := testdelay.o kn_common.o#generate the pathCURRENT_PATH:=$(shell pwd)#the current kernel version numberLINUX_KERNEL:=$(shell uname -r)#the absolute pathLINUX_KERNEL_PATH:=/usr/src/kernels/$(LINUX_KERNEL)#complie objectall:    make -C $(LINUX_KERNEL_PATH) M=$(CURRENT_PATH) modules    rm -rf modules.order Module.symvers .*.cmd *.o *.mod.c .tmp_versions *.unsigned#cleanclean:    rm -rf modules.order Module.symvers .*.cmd *.o *.mod.c *.ko .tmp_versions *.unsigned

 

执行测试命令及查看结果的方法如下:(我的测试系统是 CentOS 6.3 x64)

[root@vbox chap11]# make[root@vbox chap11]# insmod mydelay.ko [root@vbox chap11]# rmmod mydelay.ko [root@vbox chap11]# dmesg | tail -14HZ in current system: 1000Hzjiffies [b e f o r e] short delay: 4296079617jiffies [a f t e r] short delay: 4296079617This sample start at : 4296079619sleep 2s ....This is my delay function start......The jiffies when init timer: 4296079619The jiffies when timer is running: 4296080621This is my delay function end........This sample end at : 4296081622*************************2013-5-9 23:7:20testdelay is exited!*************************

 

结果说明:

1. 短延迟只延迟了 5ns,所以执行前后的jiffies是一样的。

jiffies [b e f o r e] short delay: 4296079617jiffies [a f t e r] short delay: 4296079617

 

2. 自定义定时器延迟了1秒后执行自定义函数,由于我的系统 HZ=1000,所以jiffies应该相差1000

The jiffies when init timer: 4296079619The jiffies when timer is running: 4296080621

实际上jiffies相差了 1002,多了2个节拍

 

3. schedule_timeout 延迟了2秒,jiffies应该相差 2000

This sample start at : 4296079619This sample end at : 4296081622

实际上jiffies相差了 2003,多了3个节拍

 

以上结果也说明了定时器的延迟并不是那么精确,差了2,3个节拍其实就是误差2,3毫秒(因为HZ=1000)

如果HZ=100的话,一个节拍是10毫秒,那么定时器的误差可能就发现不了了(误差只有2,3毫秒,没有超多1个节拍)。

转载于:https://www.cnblogs.com/wang_yb/archive/2013/05/10/3070373.html

你可能感兴趣的文章
ADF_Tutorials系列17_ADF Faces_使用布局组件
查看>>
转盘抽奖游戏
查看>>
oracle常用函数
查看>>
hibernate的映射文件字段长度和数据库里面的字段长度
查看>>
CSS(二)选择符
查看>>
jquery的$().each,$.each的区别
查看>>
harris角点检测的学习
查看>>
global与nonlocal关键字
查看>>
数据库树状结构的关系表的删除方案
查看>>
vue生命周期探究(一)
查看>>
mysql-3 检索数据(1)
查看>>
data source from bit.ly
查看>>
React版本更新及升级须知(持续更新)
查看>>
mybatis和spring整合
查看>>
其他样式
查看>>
Android 开发笔记“关闭默认键盘”
查看>>
转 执行计划突变分析
查看>>
Oracle 高水位问题
查看>>
html5,表格与框架综合布局
查看>>
A + B Problem II
查看>>